Code: IT3T1

II B.Tech - I Semester-Regular/Supplementary Examinations November 2019

DIGITAL SYSTEM DESIGN (INFORMATION TECHNOLOGY)

Duration: 3 hours
Max. Marks: 70
PART - A
Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) Define binary coded decimal code
b) Convert the following in to corresponding number systems $(367.52)_{8}=()_{2}$ and (AF9.EB) $)_{16}=()_{2}$
c) Compare between Digital Logic Gate and Integrated Circuit.
d) Minimize the Boolean function $\mathrm{F}=\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}+\mathrm{X}^{\prime} \mathrm{YZ}+\mathrm{XYZ}$.
e) Define combinational circuit.
f) Explain a magnitude comparator with considering suitable example.
g) Write minimum steps must be considered for transferring a stored word out of memory.
h) Derive the excitation table of JK and T-flip flops.
i) Write short notes on PLD's.
j) Define State Table and State Diagram.
k) What are the drawbacks of ripple counters?

PART - B

Answer any $\boldsymbol{T H R E E}$ questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Perform the following Number base conversions and find out as follows:
(i) $(92.714)_{10}=(\quad)_{8} \quad$ and (ii) $(41.513)_{8}=()_{10} \quad 8 \mathrm{M}$
b) i) Obtain the 2's complement for the following
a)11011010
b) 01110110
ii) Obtain the 9's complement for the following
$\begin{array}{ll}\text { a) } 12345678 & \text { b) } 24681234\end{array}$
8 M
3. a) Obtain minimal expression for $\mathrm{F}=\Sigma(1,2,3,5,6,7,8,9$, $12,13,15)$ using K - map method. 8 M
b) Simplify the Boolean function $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(1,3,7,11$, 15) which has the don't care conditions $\mathrm{d}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,2,5)$ 8 M
4. a) Write the truth table of 3 bit gray to binary code conversion. Show the realization using 4X1 MUX? 8 M
b) Design full adder and construct with half adders and implement full adder only with NAND gates. 8 M
5. a) Implement the following Boolean functions using PAL. Also write the PAL programming table.
(i) $\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(6,8,9,12,13,14,15)$
(ii) $\mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(1,4,5,6,7,10,11,12,13)$
(iii) $\mathrm{F}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(4,5,6,7,10,11)$
(iv) $\mathrm{F}_{4}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(4,5,6,7,9,10,11,12,13,14,15) \quad 8 \mathrm{M}$
b) Realize the following Boolean functions using a PLA.
(i) $\mathrm{F}_{1}=\Sigma(0,4,7)$
(ii) $\mathrm{F}_{2}=\Sigma(1,3,6)$
(iii) $\mathrm{F}_{3}=\Sigma(1,2,4,6)$
6. a) Design a Sequential Circuit that detects a sequence of three or more consecutive 1's in a string using D flip flop. 8 M
b) Convert the T-flip flop to function like a JK-flip flop. 8 M
